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PREFACE TO THE THIRD EDITION

The Third Edition contains some newmaterial.More specifically, the chapter on large sam-
ple theory has been reorganized, repositioned, and re-titled in recognition of the growing
role of asymptotic statistics. In Chapter 12 on General Linear Hypothesis, the section on
regression analysis has been greatly expanded to include multiple regression and logistic
and Poisson regression.

Some more problems and remarks have been added to illustrate the material covered.
The basic character of the book, however, remains the same as enunciated in the Preface to
the first edition. It remains a solid introduction to first-year graduate students or advanced
seniors in mathematics and statistics as well as a reference to students and researchers in
other sciences.

We are grateful to the readers for their comments on this book over the past 40 years
and would welcome any questions, comments, and suggestions. You can communi-
cate with Vijay K. Rohatgi at vrohatg@bgsu.edu and with A. K. Md. Ehsanes Saleh at
esaleh@math.carleton.ca.

Vijay K. RohatgiSolana Beach, CA
A. K. Md. Ehsanes SalehOttawa, Canada



PREFACE TO THE SECOND EDITION

There is a lot that is different about this second edition. First, there is a co-author without
whose help this revision would not have been possible. Second, we have benefited from
countless letters from readers and colleagues who have pointed out errors and omissions
and have made valuable suggestions over the past 25 years. These communications make
this revision worth the effort. Third, we have tried to update the content of the book while
striving to preserve the character and spirit of the first edition.

Here are some of the numerous changes that have been made.

1. The Introduction section has been removed. We have also removed Chapter 14 on
sequential statistical inference.

2. Many parts of the book have gone substantial rewriting. For example, Chapter 4 has
many changes, such as inclusion of exchangeability. In Chapter 3, an introduction to
characteristic functions has been added. In Chapter 5 some new distributions have
been added while in Chapter 6 there have been many changes in proofs.

3. The statistical inference part of the book (Chapters 8 to 13) has been updated.
Thus in Chapter 8 we have expanded the coverage of invariance and have included
discussions of ancillary statistics and conjugate prior distributions.

4. Similar changes have been made in Chapter 9. A new section on locally most
powerful tests has been added.

5. Chapter 11 has been greatly revised and a discussion of invariant confidence
intervals has been added.

6. Chapter 13 has been completely rewritten in the light of increased emphasis on
nonparametric inference. We have expanded the discussion of U-statistics. Later
sections show the connection between commonly used tests and U-statistics.

7. In Chapter 12, the notation has been changed to confirm to the current convention.
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8. Many problems and examples have been added.

9. More figures have been added to illustrate examples and proofs.

10. Answers to selected problems have been provided.

We are truly grateful to the readers of the first edition for countless comments and
suggestions and hope we will continue to hear from them about this edition.

Special thanks are due Ms. Gillian Murray for her superb word processing of the
manuscript, and Dr. Indar Bhatia for figures that appear in the text. Dr. Bhatia spent count-
less hours preparing the diagrams for publication. We also acknowledge the assistance of
Dr. K. Selvavel.

Vijay K. Rohatgi
A. K. Md. Ehsanes Saleh



PREFACE TO THE FIRST EDITION

This book on probability theory and mathematical statistics is designed for a three-quarter
course meeting 4 hours per week or a two-semester course meeting 3 hours per week. It is
designed primarily for advanced seniors and beginning graduate students in mathematics,
but it can also be used by students in physics and engineering with strong mathematical
backgrounds. Let me emphasize that this is a mathematics text and not a “cookbook.” It
should not be used as a text for service courses.

Themathematics prerequisites for this book aremodest. It is assumed that the reader has
had basic courses in set theory and linear algebra and a solid course in advanced calculus.
No prior knowledge of probability and/or statistics is assumed.

My aim is to provide a solid and well-balanced introduction to probability theory and
mathematical statistics. It is assumed that students who wish to do graduate work in prob-
ability theory and mathematical statistics will be taking, concurrently with this course, a
measure-theoretic course in analysis if they have not already had one. These students can
go on to take advanced-level courses in probability theory or mathematical statistics after
completing this course.

This book consists of essentially three parts, although no such formal divisions are des-
ignated in the text. The first part consists of Chapters 1 through 6, which form the core of
the probability portion of the course. The second part, Chapters 7 through 11, covers the
foundations of statistical inference. The third part consists of the remaining three chapters
on special topics. For course sequences that separate probability and mathematical statis-
tics, the first part of the book can be used for a course in probability theory, followed by
a course in mathematical statistics based on the second part and, possibly, one or more
chapters on special topics.

The reader will find here a wealth of material. Although the topics covered are fairly
conventional, the discussions and special topics included are not. Many presentations give
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far more depth than is usually the case in a book at this level. Some special features of the
book are the following:

1. A well-referenced chapter on the preliminaries.

2. About 550 problems, over 350worked-out examples, about 200 remarks, and about
150 references.

3. An advance warning to reader wherever the details become too involved. They can
skip the later portion of the section in question on first reading without destroying
the continuity in any way.

4. Many results on characterizations of distributions (Chapter 5).

5. Proof of the central limit theorem by the method of operators and proof of the
strong law of large numbers (Chapter 6).

6. A section on minimal sufficient statistics (Chapter 8).

7. A chapter on special tests (Chapter 10).

8. A careful presentation of the theory of confidence intervals, including Bayesian
intervals and shortest-length confidence intervals (Chapter 11).

9. A chapter on the general linear hypothesis, which carries linear models through to
their use in basic analysis of variance (Chapter 12).

10. Sections on nonparametric estimation and robustness (Chapter 13).

11. Two sections on sequential estimation (Chapter 14).

The contents of this bookwere used in a 1-year (two-semester) course that I taught three
times at the Catholic University of America and once in a three-quarter course at Bowling
Green State University. In the fall of 1973 my colleague, Professor Eugene Lukacs, taught
the first quarter of this same course on the basis of my notes, which eventually became
this book. I have always been able to cover this book (with few omissions) in a 1-year
course, lecturing 3 hours a week. An hour-long problem session every week is conducted
by a senior graduate student.

In a book of this size there are bound to be some misprints, errors, and ambiguities of
presentation. I shall be grateful to any reader who brings these to my attention.

V. K. RohatgiBowling Green, Ohio
February 1975



ACKNOWLEDGMENTS

We take this opportunity to thank many correspondents whose comments and criticisms
led to improvements in the Third Edition. The list below is far from complete since it
does not include the names of countless students whose reactions to the book as a text
helped the authors in this revised edition. We apologize to those whose names may have
been inadvertently omitted from the list because we were not diligent enough to keep
a complete record of all the correspondence. For the third edition we wish to thank
Professors Yue-Cune Chang, Anirban Das Gupta, A. G. Pathak, Arno Weiershauser, and
many other readers who sent their questions and comments. We also wish to acknowl-
edge the assistance of Dr. Pooplasingam Sivakumar in preparation of the manuscript.
For the second edition: Barry Arnold, Lennart Bondesson, Harry Cohn, Frank Connonito,
Emad El-Neweihi, Ulrich Faigle, Pier Alda Ferrari, Martin Feuerrnan, Xavier Fernando,
Z. Govindarajulu, Arjun Gupta, Hassein Hamedani, Thomas Hem, Jin-Sheng Huang, Bill
Hudson, Barthel Huff, V. S. Huzurbazar, B. K. Kale, Sam Kotz, Bansi Lal, Sri Gopal
Mohanty, M. V. Moorthy, True Nguyen, Tom O’Connor, A. G. Pathak, Edsel Pena,
S. Perng, Madan Puri, Prem Puri, J. S. Rao, Bill Raser, Andrew Rukhin, K. Selvavel,
Rajinder Singh, R. J. Tomkins; for the first edition, Ralph Baty, Ralph Bradley, Eugene
Lukacs, Kae Lea Main, Tom and Carol O’Connor, M. S. Scott Jr., J. Sethuraman, Beatrice
Shube, Jeff Spielman, and Robert Tortora.

We thank the publishers of the American Mathematical Monthly, the SIAM Review,
and the American Statistician for permission to include many examples and problems that
appeared in these journals. Thanks are also due to the following for permission to include
tables: Professors E. S. Pearson and L. R. Verdooren (Table ST11), Harvard University
Press (Table ST1), Hafner Press (Table ST3), Iowa State University Press (Table ST5),
Rand Corporation (Table ST6), the American Statistical Association (Tables ST7 and
ST10), the Institute of Mathematical Statistics (Tables ST8 and ST9), Charles Griffin &
Co., Ltd. (Tables ST12 and ST13), and John Wiley & Sons (Tables ST1, ST2, ST4, ST10,
and ST11).



ENUMERATION OF THEOREMS
AND REFERENCES

This book is divided into 13 chapters, numbered 1 through 13. Each chapter is divided
into several sections. Lemmas, theorems, equations, definitions, remarks, figures, and so
on, are numbered consecutively within each section. Thus Theorem i.j.k refers to the kth
theorem in Section j of Chapter i, Section i.j refers to the jth section of Chapter i, and
so on. Theorem j refers to the jth theorem of the section in which it appears. A similar
convention is used for equations except that equation numbers are enclosed in parenthe-
ses. Each section is followed by a set of problems for which the same numbering system
is used.

References are given at the end of the book and are denoted in the text by numbers
enclosed in square brackets, [ ]. If a citation is to a book, the notation ([i, p. j]) refers to
the jth page of the reference numbered [i].

A word about the proofs of results stated without proof in this book. If a reference
appears immediately following or preceding the statement of a result, it generally means
that the proof is beyond the scope of this text. If no reference is given, it indicates that the
proof is left to the reader. Sometimes the reader is asked to supply the proof as a problem.



1
PROBABILITY

1.1 INTRODUCTION

The theory of probability had its origin in gambling and games of chance. It owes much
to the curiosity of gamblers who pestered their friends in the mathematical world with all
sorts of questions. Unfortunately this association with gambling contributed to a very slow
and sporadic growth of probability theory as a mathematical discipline. The mathemati-
cians of the day took little or no interest in the development of any theory but looked only
at the combinatorial reasoning involved in each problem.

The first attempt at some mathematical rigor is credited to Laplace. In his monumental
work, Theorie analytique des probabilités (1812), Laplace gave the classical definition of
the probability of an event that can occur only in a finite number of ways as the proportion
of the number of favorable outcomes to the total number of all possible outcomes, provided
that all the outcomes are equally likely. According to this definition, the computation of
the probability of events was reduced to combinatorial counting problems. Even in those
days, this definition was found inadequate. In addition to being circular and restrictive,
it did not answer the question of what probability is, it only gave a practical method of
computing the probabilities of some simple events.

An extension of the classical definition of Laplace was used to evaluate the probabilities
of sets of events with infinite outcomes. The notion of equal likelihood of certain events
played a key role in this development. According to this extension, ifΩ is some region with
a well-defined measure (length, area, volume, etc.), the probability that a point chosen at
random lies in a subregion A of Ω is the ratio measure(A)/measure(Ω). Many problems
of geometric probability were solved using this extension. The trouble is that one can

An Introduction to Probability and Statistics, Third Edition. Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



2 PROBABILITY

define “at random” in any way one pleases, and different definitions therefore lead to dif-
ferent answers. Joseph Bertrand, for example, in his book Calcul des probabilités (Paris,
1889) cited a number of problems in geometric probability where the result depended
on the method of solution. In Example 9 we will discuss the famous Bertrand paradox
and show that in reality there is nothing paradoxical about Bertrand’s paradoxes; once
we define “probability spaces” carefully, the paradox is resolved. Nevertheless difficul-
ties encountered in the field of geometric probability have been largely responsible for
the slow growth of probability theory and its tardy acceptance by mathematicians as a
mathematical discipline.

The mathematical theory of probability, as we know it today, is of comparatively recent
origin. It was A. N. Kolmogorov who axiomatized probability in his fundamental work,
Foundations of the Theory of Probability (Berlin), in 1933. According to this development,
random events are represented by sets and probability is just a normed measure defined on
these sets. This measure-theoretic development not only provided a logically consistent
foundation for probability theory but also, at the same time, joined it to the mainstream of
modern mathematics.

In this book we follow Kolmogorov’s axiomatic development. In Section 1.2 we intro-
duce the notion of a sample space. In Section 1.3 we state Kolmogorov’s axioms of
probability and study some simple consequences of these axioms. Section 1.4 is devoted to
the computation of probability on finite sample spaces. Section 1.5 deals with conditional
probability and Bayes’s rule while Section 1.6 examines the independence of events.

1.2 SAMPLE SPACE

In most branches of knowledge, experiments are a way of life. In probability and statis-
tics, too, we concern ourselves with special types of experiments. Consider the following
examples.

Example 1. A coin is tossed. Assuming that the coin does not land on the side, there are
two possible outcomes of the experiment: heads and tails. On any performance of this
experiment one does not know what the outcome will be. The coin can be tossed as many
times as desired.

Example 2. A roulette wheel is a circular disk divided into 38 equal sectors numbered
from 0 to 36 and 00. A ball is rolled on the edge of the wheel, and the wheel is rolled
in the opposite direction. One bets on any of the 38 numbers or some combinations of
them. One can also bet on a color, red or black. If the ball lands in the sector numbered
32, say, anybody who bet on 32 or combinations including 32 wins, and so on. In this
experiment, all possible outcomes are known in advance, namely 00, 0, 1, 2, . . . ,36, but
on any performance of the experiment there is uncertainty as to what the outcome will be,
provided, of course, that the wheel is not rigged in any manner. Clearly, the wheel can be
rolled any number of times.

Example 3. A manufacturer produces footrules. The experiment consists in measuring
the length of a footrule produced by the manufacturer as accurately as possible. Because
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of errors in the production process one does not know what the true length of the footrule
selected will be. It is clear, however, that the length will be, say, between 11 and 13 in.,
or, if one wants to be safe, between 6 and 18 in.

Example 4. The length of life of a light bulb produced by a certain manufacturer is
recorded. In this case one does not know what the length of life will be for the light bulb
selected, but clearly one is aware in advance that it will be some number between 0 and
∞ hours.

The experiments described above have certain common features. For each experiment,
we know in advance all possible outcomes, that is, there are no surprises in store after the
performance of any experiment. On any performance of the experiment, however, we do
not know what the specific outcome will be, that is, there is uncertainty about the outcome
on any performance of the experiment. Moreover, the experiment can be repeated under
identical conditions. These features describe a random (or a statistical) experiment.

Definition 1. A random (or a statistical) experiment is an experiment in which

(a) all outcomes of the experiment are known in advance,

(b) any performance of the experiment results in an outcome that is not known in
advance, and

(c) the experiment can be repeated under identical conditions.

In probability theory we study this uncertainty of a random experiment. It is convenient
to associate with each such experiment a set Ω, the set of all possible outcomes of the
experiment. To engage in any meaningful discussion about the experiment, we associate
with Ω a σ-field S, of subsets of Ω. We recall that a σ-field is a nonempty class of subsets
ofΩ that is closed under the formation of countable unions and complements and contains
the null set Φ.

Definition 2. The sample space of a statistical experiment is a pair (Ω,S), where

(a) Ω is the set of all possible outcomes of the experiment and

(b) S is a σ-field of subsets of Ω.

The elements ofΩ are called sample points. Any set A∈ S is known as an event. Clearly
A is a collection of sample points. We say that an event A happens if the outcome of the
experiment corresponds to a point in A. Each one-point set is known as a simple or an
elementary event. If the setΩ contains only a finite number of points, we say that (Ω,S) is
a finite sample space. If Ω contains at most a countable number of points, we call (Ω,S)
a discrete sample space. If, however, Ω contains uncountably many points, we say that
(Ω,S) is an uncountable sample space. In particular, if Ω = Rk or some rectangle in Rk,
we call it a continuous sample space.

Remark 1. The choice of S is an important one, and some remarks are in order. If Ω con-
tains at most a countable number of points, we can always take S to be the class of all
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subsets of Ω. This is certainly a σ-field. Each one point set is a member of S and is the
fundamental object of interest. Every subset of Ω is an event. If Ω has uncountably many
points, the class of all subsets of Ω is still a σ-field, but it is much too large a class of
sets to be of interest. It may not be possible to choose the class of all subsets of Ω as S.
One of the most important examples of an uncountable sample space is the case in which
Ω=R orΩ is an interval inR. In this case we would like all one-point subsets ofΩ and all
intervals (closed, open, or semiclosed) to be events. We use our knowledge of analysis to
specify S. We will not go into details here except to recall that the class of all semiclosed
intervals (a,b] generates a class B1 which is a σ-field on R. This class contains all one-
point sets and all intervals (finite or infinite). We take S =B1. Since we will be dealing
mostly with the one-dimensional case, we will write B instead of B1. There are many
subsets of R that are not in B1, but we will not demonstrate this fact here. We refer the
reader to Halmos [42], Royden [96], or Kolmogorov and Fomin [54] for further details.

Example 5. Let us toss a coin. The set Ω is the set of symbols H and T, where H
denotes head and T represents tail. Also, S is the class of all subsets of Ω, namely,
{{H},{T},{H,T},Φ}. If the coin is tossed two times, then

Ω= {(H,H),(H,T),(T,H),(T,T)}, S= {∅,{(H,H)},
{(H,T)},{(T,H)},{(T,T)},{(H,H),(H,T)},{(H,H),(T,H)},
{(H,H),(T,T)},{(H,T),(T,H)},{(T,T),(T,H)},{(T,T),
(H,T)},{(H,H),(H,T),(T,H)},{(H,H),(H,T),(T,T)},
{(H,H),(T,H),(T,T)},{(H,T),(T,H),(T,T)},Ω},

where the first element of a pair denotes the outcome of the first toss and the second
element, the outcome of the second toss. The event at least one head consists of sample
points (H,H), (H,T), (T,H). The event at most one head is the collection of sample points
(H,T), (T,H), (T,T).

Example 6. A die is rolled n times. The sample space is the pair (Ω,S), where Ω is the
set of all n-tuples (x1,x2, . . . ,xn), xi ∈ {1,2,3,4,5,6}, i = 1,2, . . . ,n, and S is the class of
all subsets of Ω. Ω contains 6n elementary events. The event A that 1 shows at least once
is the set

A = {(x1,x2, . . . ,xn) : at least one of xi’s is 1}
=Ω−{(x1,x2, . . . ,xn) : none of the xi’s is 1}
=Ω−{(x1,x2, . . . ,xn) : xi ∈ {2,3,4,5,6}, i = 1,2, . . . ,n}.

Example 7. A coin is tossed until the first head appears. Then

Ω= {H,(T,H),(T,T,H),(T,T,T,H), . . .},

and S is the class of all subsets of Ω. An equivalent way of writing Ω would be to look
at the number of tosses required for the first head. Clearly, this number can take values
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1,2,3, . . . , so that Ω is the set of all positive integers. The S is the class of all subsets of
positive integers.

Example 8. Consider a pointer that is free to spin about the center of a circle. If the pointer
is spun by an impulse, it will finally come to rest at some point. On the assumption that
the mechanism is not rigged in any manner, each point on the circumference is a possible
outcome of the experiment. The set Ω consists of all points 0 ≤ x < 2πr, where r is the
radius of the circle. Every one-point set {x} is a simple event, namely, that the pointer
will come to rest at x. The events of interest are those in which the pointer stops at a point
belonging to a specified arc. Here S is taken to be the Borel σ-field of subsets of [0,2πr).

Example 9. A rod of length l is thrown onto a flat table, which is ruled with parallel lines
at distance 2l. The experiment consists in noting whether the rod intersects one of the ruled
lines.

Let r denote the distance from the center of the rod to the nearest ruled line, and let θ
be the angle that the axis of the rod makes with this line (Fig. 1). Every outcome of this
experiment corresponds to a point (r,θ) in the plane. As Ω we take the set of all points
(r,θ) in {(r,θ) : 0≤ r ≤ l,0≤ θ < π}. For S we take the Borel σ-field,B2, of subsets of
Ω, that is, the smallest σ-field generated by rectangles of the form

{(x,y) : a < x ≤ b, c < y ≤ d, 0≤ a < b ≤ l, 0≤ c < d < π}.

Clearly the rod will intersect a ruled line if and only if the center of the rod lies in the area
enclosed by the locus of the center of the rod (while one end touches the nearest line) and
the nearest line (shaded area in Fig. 2).

Remark 2. From the discussion above it should be clear that in the discrete case there is
really no problem. Every one-point set is also an event, and S is the class of all subsets ofΩ.

r

l/2

l/2
2l

Fig. 1
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r

r=    sin θ

θ

l

π

l/2

π/2

l
2

Fig. 2

The problem, if there is any, arises only in regard to uncountable sample spaces. The reader
has to remember only that in this case not all subsets ofΩ are events. The case ofmost inter-
est is the one in whichΩ=Rk. In this case, roughly all sets that have a well-defined volume
(or area or length) are events. Not every set has the property in question, but sets that lack
it are not easy to find and one does not encounter them in practice.

PROBLEMS 1.2

1. A club has five members A, B, C, D, and E. It is required to select a chairman and a
secretary. Assuming that one member cannot occupy both positions, write the sam-
ple space associated with these selections. What is the event that member A is an
office holder?

2. In each of the following experiments, what is the sample space?

(a) In a survey of families with three children, the sexes of the children are recorded
in increasing order of age.

(b) The experiment consists of selecting four items from a manufacturer’s output
and observing whether or not each item is defective.

(c) A given book is opened to any page, and the number of misprints is counted.

(d) Two cards are drawn (i) with replacement and (ii) without replacement from an
ordinary deck of cards.

3. Let A, B, C be three arbitrary events on a sample space (Ω,S). What is the event that
only A occurs? What is the event that at least two of A, B, C occur? What is the event
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that both A and C, but not B, occur? What is the event that at most one of A, B, C
occurs?

1.3 PROBABILITY AXIOMS

Let (Ω,S) be the sample space associated with a statistical experiment. In this section we
define a probability set function and study some of its properties.

Definition 1. Let (Ω,S) be a sample space. A set function P defined on S is called a
probability measure (or simply probability) if it satisfies the following conditions:

(i) P(A)≥ 0 for all A ∈ S.

(ii) P(Ω) = 1.

(iii) Let {Aj}, Aj ∈ S, j = 1,2, . . . , be a disjoint sequence of sets, that is, Aj ∩Ak = Φ
for j �= k where Φ is the null set. Then

P

⎛
⎝ ∞�

j=1

Aj

⎞
⎠=

∞�
j=1

P(Aj), (1)

where we have used the notation
�∞

j=1 Aj to denote union of disjoint sets Aj.

We call P(A) the probability of event A. If there is no confusion, we will write PA
instead of P(A). Property (iii) is called countable additivity. That PΦ = 0 and P is also
finitely additive follows from it.

Remark 1. IfΩ is discrete and contains at most n (<∞) points, each single-point set {ωj},
j = 1,2, . . . ,n, is an elementary event, and it is sufficient to assign probability to each {ωj}.
Then, if A ∈ S, where S is the class of all subsets of Ω, PA =

�
ω∈A P{ω}. One such

assignment is the equally likely assignment or the assignment of uniform probabilities.
According to this assignment, P{ωj}= 1/n, j = 1,2, . . . ,n. Thus PA = m/n if A contains
m elementary events, 1≤ m ≤ n.

Remark 2. If Ω is discrete and contains a countable number of points, one cannot make
an equally likely assignment of probabilities. It suffices to make the assignment for
each elementary event. If A ∈ S, where S is the class of all subsets of Ω, define PA =�

ω∈A P{ω}.

Remark 3. If Ω contains uncountably many points, each one-point set is an elementary
event, and again one cannot make an equally likely assignment of probabilities. Indeed,
one cannot assign positive probability to each elementary event without violating the
axiom PΩ = 1. In this case one assigns probabilities to compound events consisting of
intervals. For example, if Ω = [0,1] and S is the Borel σ-field of all subsets of Ω, the
assignment P[I] = length of I, where I is a subinterval of Ω, defines a probability.
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Definition 2. The triple (Ω,S,P) is called a probability space.

Definition 3. Let A ∈ S. We say that the odds for A are a to b if PA = a/(a+b), and then
the odds against A are b to a.

In many games of chance, probability is often stated in terms of odds against an event.
Thus in horse racing a two dollar bet on a horse to win with odds of 2 to 1 (against) pays
approximately six dollars if the horse wins the race. In this case the probability of winning
is 1/3.

Example 1. Let us toss a coin. The sample space is (Ω,S), where Ω = {H,T}, and S is
the σ-field of all subsets of Ω. Let us define P on S as follows.

P{H}= 1/2, P{T}= 1/2.

Then P clearly defines a probability. Similarly, P{H}= 2/3, P{T}= 1/3, and P{H}= 1,
P{T}= 0 are probabilities defined on S. Indeed,

P{H}= p and P{T}= 1−p (0≤ p ≤ 1)

defines a probability on (Ω,S).

Example 2. Let Ω = {1,2,3, . . .} be the set of positive integers, and let S be the class of
all subsets of Ω. Define P on S as follows:

P{i}= 1
2i
, i = 1,2, . . . .

Then
�∞

i=1 P{i}= 1, and P defines a probability.

Example 3. Let Ω= (0,∞) and S=B, the Borel σ-Field on Ω. Define P as follows: for
each interval I ⊆ Ω,

PI =
�

I
e−x dx.

Clearly PI ≥ 0, PΩ= 1, and P is countably additive by properties of integrals.

Theorem 1. P is monotone and subtractive; that is, if A,B ∈ S and A ⊆ B, then PA ≤ PB
and P(B−A) = PB−PA, where B−A = B∩Ac, Ac being the complement of the event A.

Proof. If A ⊆ B, then

B = (A∩B)+(B−A) = A+(B−A).

and it follows that PB = PA+P(B−A).

Corollary. For all A ∈ S, 0≤ PA ≤ 1.
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Remark 4. We wish to emphasize that, if PA = 0 for some A ∈ S, we call A an event with
zero probability or a null event. However, it does not follow thatA=Φ. Similarly, ifPB= 1
for some B ∈ S, we call B a certain event but it does not follow that B =Ω.

Theorem 2 (The Addition Rule). If A,B ∈ S, then

P(A∪B) = PA+PB−P(A∩B). (2)

Proof. Clearly

A∪B = (A−B)+(B−A)+(A∩B)

and

A = (A∩B)+(A−B),B = (A∩B)+(B−A).

The result follows by countable additivity of P.

Corollary 1. P is subadditive, that is, if A,B ∈ S, then

P(A∪B)≤ PA+PB. (3)

Corollary 1 can be extended to an arbitrary number of events Aj,

P

	

j

Aj

�
≤
�

j

PAj. (4)

Corollary 2. If B = Ac, then A and B are disjoint and

PA = 1−PAc. (5)

The following generalization of (2) is left as an exercise.

Theorem 3 (The Principle of Inclusion–Exclusion). Let A1,A2, . . . ,An ∈ S. Then

P

	
n


k=1

Ak

�
=

n�
k=1

PAk −
n�

k1<k2

P(Ak1 ∩Ak2)

+
n�

k1<k2<k3

P(Ak1 ∩Ak2 ∩Ak3)

+ · · ·+(−1)n+1P

	
n�

k=1

Ak

�
. (6)
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Example 4. A die is rolled twice. Let all the elementary events in Ω = {(i, j) : i, j =
1,2, . . . ,6} be assigned the same probability. Let A be the event that the first throw shows
a number ≤ 2, and B, the event that the second throw shows at least 5. Then

A = {(i, j) : 1≤ i ≤ 2, j = 1,2, . . . ,6},
B = {(i, j) : 5≤ j ≤ 6, i = 1,2, . . . ,6},

A∩B = {(1,5),(1,6),(2,5),(2,6)};

P(A∪B) = PA+PB−P(A∩B)

= 1
3 +

1
3 −

4
36 =

5
9 .

Example 5. A coin is tossed three times. Let us assign equal probability to each of the 23

elementary events in Ω. Let A be the event that at least one head shows up in three throws.
Then

P(A) = 1−P(Ac)

= 1−P(no heads)

= 1−P(TTT) = 7
8 .

We next derive two useful inequalities.

Theorem 4 (Bonferroni’s Inequality). Given n (> 1) events A1,A2, . . . ,An,

n�
i=1

PAi −
�
i<j

P(Ai ∩Aj)≤ P

	
n


i=1

Ai

�
≤

n�
i=1

PAi. (7)

Proof. In view of (4) it suffices to prove the left side of (7). The proof is by induction.
The inequality on the left is true for n = 2 since

PA1+PA2−P(A1∩A2) = P(A1∪A2).

For n = 3,

P

	
3


i=1

Ai

�
=

3�
i=1

PAi −
�
i<j

P(Ai ∩Aj)+P(A1∩A2∩A3),

and the result holds. Assuming that (7) holds for 3< m ≤ n−1, we show that it holds also
for m+1:

P

	
m+1

i=1

Ai

�
= P

		
m


i=1

Ai

�
∪Am+1

�

= P

	
m


i=1

Ai

�
+PAm+1−P

	
Am+1∩

	
m

1

Ai

��
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≥
m+1�
i=1

PAi −
m�

i<j

P(Ai ∩Aj)−P

	
m


i=1

(Ai ∩Am+1)

�

≥
m+1�
i=1

PAi −
m�

i<j

P(Ai ∩Aj)−
m�

i=1

P(Ai ∩Am+1)

=

m+1�
i=1

PAi −
m+1�
i<j

P(Ai ∩Aj).

Theorem 5 (Boole’s Inequality). For any two events, A and B,

P(A∩B)≥ 1−PAc −PBc. (8)

Corollary 1. Let {Aj}, j = 1,2, . . . , be a countable sequence of events; then

P(∩Aj)≥ 1−
�

P(Ac
j ). (9)

Proof. Take

B =
∞�

j=2

Aj and A = A1

in (8).

Corollary 2 (The Implication Rule). If A,B,C ∈ S and A and B imply C, then

PCc ≤ PAc +PBc. (10)

Let {An} be a sequence of sets. The set of all pointsω ∈Ω that belong toAn for infinitely
many values of n is known as the limit superior of the sequence and is denoted by

limsup
n→∞

An or lim
n→∞

An.

The set of all points that belong to An for all but a finite number of values of n is known
as the limit inferior of the sequence {An} and is denoted by

lim
n→∞

inf An or lim
n→∞

An.

If

lim
n→∞

An = lim
n→∞

An,

we say that the limit exists and write limn→∞ An for the common set and call it the limit
set.
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We have

lim
n→∞

An =

∞

n=1

∞�
k=n

Ak ⊆
∞�

n=1

∞

k=n

Ak = lim
n→∞

An.

If the sequence {An} is such that An ⊆ An+1, for n = 1,2, . . ., it is called nondecreasing;
if An ⊇ An+1, n = 1,2, . . ., it is called nonincreasing. If the sequence An is nondecreasing,
we write An �↓ ; if An is nonincreasing, we write An �↑ . Clearly, if An �↑ or An �↓ , the limit
exists and we have

lim
n

An =

∞

n=1

An if An �↓

and

lim
n

An =

∞�
n=1

An if An �↑ .

Theorem 6. Let {An} be a nondecreasing sequence of events in S, that is, An ∈ S,
n = 1,2, . . . , and

An ⊇ An−1, n = 2,3, . . . .

Then

lim
n→∞

PAn = P

lim

n→∞
An

�
= P

	 ∞

n=1

An

�
. (11)

Proof. Let

A =

∞

j=1

Aj.

Then

A = An +
∞�

j=n

(Aj+1−Aj).

By countable additivity we have

PA = PAn +
∞�

j=n

P(Aj+1−Aj).

and letting n →∞, we see that

PA = lim
n→∞

PAn + lim
n→∞

∞�
j=n

P(Aj+1−Aj).




